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Abstract

Talking to each other is personal, maybe even intimate. Thus, privacy expectations are particularly high

during interpersonal conversations, and image or audio recordings are problematic in these contexts. In

consequence, smart glasses and other body-worn devices with “always-on’’ cameras are not well ac-

cepted during interpersonal conversations. Proposing a simple-to-implement computer vision procedure,

we work towards a solution to this issue. Using imagery from a head-worn camera we detect face-to-face

conversations in real-time, as well as distinguish between intimate, personal and social conversations

based on intrinsic camera parameters. Starting from a fictive scenario, we illustrate how this knowledge

can be used for interaction designs that increase both, the users’ as well as their bystanders’ privacy, e.g.,

by muting audio or disabling the camera. Finally, we suggest directions for future work.

1 Introduction

Body-worn camera devices recently hit the consumer market. While those devices allow for

comfortable hands-free capture of videos and images from a first-person perspective, they also

face significant acceptability issues. Their camera might be perceived to be “always on’’ or

recording automatically, thus challenging both the user’s and bystander’s expectations about

privacy and control of image collection and sharing. These issues have been investigated in

the context of lifelogging, where Hoyle et al. found that the perceived privacy-sensitivity of

an image depends on factors such as location, activity, and presence of persons or certain ob-

jects (Hoyle et al., 2014). In the context of smart glasses with integrated camera functionality,

conversational scenarios are perceived as particularly sensitive (Koelle et al., 2015).

Prior work on detecting conversations, e.g., in the field of activity recognition, often relies on

audio data (Choudhury et al., 2008), which causes another set of privacy issues, and complex

architectures for training and classification.
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Figure 1: Basic principle; Facial features are

analyzed to determine whether a person in the

frame is Talking. Determining the person’s dis-

tance to the camera allows to infer the type of

conversation, e.g., intimate conversation.

In contrast, our approach performs a real-time analysis

of RGB data. Thus it is light-weight and easy to imple-

ment for mobile platforms. We use facial features and

the movement of the mouth to detect whether a con-

versation takes place. In addition, our apporach also

considers the social context. Using the physical dis-

tance as a proxy, we distinguish between public, so-

cial, personal, and intimate conversations (c.f., Hall,

1966) as illustrated in Figure 1. Highlighting the user-

centeredness of our approach, we start by introducing

the chosen scenario and background, before going into

detail on the prototype’s implementation.We conclude

with remarks on future directions.

2 Scenario and Background

Figure 2: The distance between two conversa-

tion partners informs the type of conversation.

According to Hall, distance zones can, with in-

creasing distance to the user, be defined as inti-

mate, personal, social and public (Hall, 1966).

In this work, we present an approach to conversation

detection, and protection, that is based on proxemics,

namely on how humans relate to their environment,

and other persons in it. Simply put, if a conversation

is detected, the proximity of the conversation part-

ner is inferred from the camera’s imagery, and defines

whether the conversation is classified as intimate, per-

sonal, social or public. These classes are defined based

on the human’s comfort zones (Hall, 1966), as depicted

in Figure 2, with the intimate zone being closest to the

device wearer. In the following, we will illustrate how

these zones relate to our prototypical implementation

using a fictive, exemplary scenario.

On their Interrail trip through Italy, Lara and Paul are using smart glasses to automatically

capture short videos and still images of memorable moments. At the moment, they are on

a guided tour in the city center of Siena. When Lara is wearing the device while listening

to the tour guide, the situation is classified as public conversation (distance > 300cm) and

the experience may be captured as short clip. Ordering an ice cream or buying something

from a market vendor would be classified as social conversation (between 300cm and

120cm distance), as a consequence, audio might be muted, and only still images would be

captured. During lunch at a restaurant, a conversation with another member of her travel

group or Paul would be classified as private, or intimate, depending on the proxemics.As a

reaction, the system would stop the recording, and/or remind to Lara to take off the glasses

to protect their privacy and to comply with social norms.

While this work mainly focuses on the detection of the different conversation types, it is not

restricted to this exemplary travel scenario. A future system’s interaction design could define

suitable reactions depending on use case, location, or application type.



3 Prototype

In this section, we describe the proposed procedure for conversation detection. As a proof-of-

concept, we implemented it in Python on a Raspberry Pi zero, using OpenCV’s implementation

of Viola-Jones’ face detection (Viola and Jones, 2004). Using a live video feed we detect faces,

and facial landmarks. Detected faces are tracked over multiple frames using a median flow

algorithm. In the following, we detail on the conversation detection procedure building there-

upon.

In a preprocessing step, each frame obtained from the live video stream is converted into gray-

scale and normalized, such that the darkest pixel in the frame is represented by 0 and the bright-

est by 255. Afterwards, camera calibration is applied based on the camera’s lens parameters to

minimize distortion (e.g., pincushion distortion).

Figure 3: The x- and

y-points of the shifted

image as used by the

median flow algorithm.

To perform detection and tracking, all faces present in the frame are lo-

calized using the Viola-Jones algorithm. In order to analyze a detected

faces over multiple frames, which is necessary to detect whether the per-

son is talking, we make use of the Median Flow algorithm (Kalal et al.,

2010) to track faces unambiguously. In brief, this procedure allows to dif-

ferentiate betweenmultiple faces, by initializing a grid of points where the

face is estimated. Secondly, all movements of the grid points are listed for

the x- and y-dimension. For each dimension, the median of the distances

is taken and the box around the face is moved accordingly. Then, a change

in scale is determined by calculating the relative change in distances for

each pair of frames. Subsequently, the median shift is selected, as visualized by Figure 3.As this

approach only works well as long as the tracked face moves slowly, the Viola-Jones detection

is re-applied every 30th frame, or when tracking is lost.

To analyze whether a conversation is taking place, the frame-wise detected face position is

used to calculate the distance between the camera and the face. For our prototype, we assumed

the camera to be at eye level. Thus, distance 𝑍 can be obtained as follows:

𝑍 = 𝐹
𝑆𝑦

⋅ 𝑌 ⋅𝑠𝑦
𝑦

𝐹 the camera’s focal length [mm]

(𝑆𝑥,𝑆𝑦) the camera’s sensor size [mm]

𝑌 expected face height1[mm]

𝑦 detected face height [mm]

(𝑠𝑥,𝑠𝑦) frame resolution [px]

𝑍 estimated distance between de-

tected face and camera [mm]

Based on this distance calculation, each face is categorized. In addition, facial landmarks are

obtained for every face, which allows to determine the shape of the mouth. Subsequently, the

distance between the upper and the lower lip (“lip distance”) is calculated in pixels, and con-

verted into millimeters (based on the distance between camera and face). We observe this value

for an interval of ten frames, which allows to determine whether the person is talking.

1The implementation of our working prototype assumes 200mm as an adult’s average face height. Depending on the

use case this estimate might have to be adapted, e.g., to not exclude children.



Figure 4: Left: simplified illustration of optical parameters used to calculate the distance between camera wearer

and conversation partner. Right: working prototype consisting of a glasses frame with attached Vufine display, a

Raspberry Pi Zero including camera and battery pack.

Figure 5: Measuring the variance in lip distance (bottom, from left to right) over multiple frames (top, indicated in

white) allows to infer whether a person is talking.

Therefore, we first calculate the average difference of the lip distances from adjacent frames.

We consider all measured lip distances of the past 10 frames, as illustrated in Figure 5. Then,

we consider all differences in lip distances of adjacent frames. The average of these differences

can be considered representative of how much the lips move. To counteract outliers, e.g., due

to shadows or reflections, the average of differences is multiplied with the standard deviation

of all measured lip distances in the current 10-frame interval. Finally, thresholding is applied to

decide whether the person in the frame is talking. Joining these results with the determined dis-

tance, presence and type of conversation are concluded. Subsequently, the systems pre-defined

reaction to a public, social, personal, or intimate conversation would be triggered.

4 Conclusion and Outlook

This paper is tied around privacy options for users and bystanders of head-worn devices with

“always-on’’ cameras. We developed a working prototype and present a light-weight and easy-

to-implement procedure that realizes conversation detection. Each detected conversation is

classified into public, social, personal, and intimate. For future applications, we envision in-

teraction designs that use knowledge about detected conversations and conversation type for

contextual privacy protection, e.g., to blur imagery, mute audio or cover the camera lens. So

far, we only have been collecting informal user feedback using our working prototype. How-

ever, a subsequent (long-term) user study will be necessary to provide insights on conversation

detection and protection in-the-wild, and to substantiate the implications of this work.
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